Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Phys Chem B ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733339

RESUMO

In-depth characterization of fundamental folding steps of small model peptides is crucial for a better understanding of the folding mechanisms of more complex biomacromolecules. We have previously reported on the folding/unfolding kinetics of a model α-helix. Here, we study folding transitions in chignolin (GYDPETGTWG), a short ß-hairpin peptide previously used as a model to study conformational changes in ß-sheet proteins. Although previously suggested, until now, the role of the Tyr2-Trp9 interaction in the folding mechanism of chignolin was not clear. In the present work, pH-dependent conformational changes of chignolin were characterized by circular dichroism (CD), nuclear magnetic resonance (NMR), ultrafast pH-jump coupled with time-resolved photoacoustic calorimetry (TR-PAC), and molecular dynamics (MD) simulations. Taken together, our results present a comprehensive view of chignolin's folding kinetics upon local pH changes and the role of the Tyr2-Trp9 interaction in the folding process. CD data show that chignolin's ß-hairpin formation displays a pH-dependent skew bell-shaped curve, with a maximum close to pH 6, and a large decrease in ß-sheet content at alkaline pH. The ß-hairpin structure is mainly stabilized by aromatic interactions between Tyr2 and Trp9 and CH-π interactions between Tyr2 and Pro4. Unfolding of chignolin at high pH demonstrates that protonation of Tyr2 is essential for the stability of the ß-hairpin. Refolding studies were triggered by laser-induced pH-jumps and detected by TR-PAC. The refolding of chignolin from high pH, mainly due to the protonation of Tyr2, is characterized by a volume expansion (10.4 mL mol-1), independent of peptide concentration, in the microsecond time range (lifetime of 1.15 µs). At high pH, the presence of the deprotonated hydroxyl (tyrosinate) hinders the formation of the aromatic interaction between Tyr2 and Trp9 resulting in a more disorganized and dynamic tridimensional structure of the peptide. This was also confirmed by comparing MD simulations of chignolin under conditions mimicking neutral and high pH.

2.
J Sci Food Agric ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520251

RESUMO

BACKGROUND: Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 µmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS: After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION: For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Plants (Basel) ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337960

RESUMO

Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel's salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.

4.
Proteins ; 92(2): 219-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814578

RESUMO

Interleukin-4 (IL-4) is a hematopoietic cytokine composed by a four-helix bundle stabilized by an antiparallel beta-sheet and three disulfide bonds: Cys3-Cys127, Cys24-Cys65, and Cys46-Cys99. IL-4 is involved in several immune responses associated to infection, allergy, autoimmunity, and cancer. Besides its physiological relevance, IL-4 is often used as a "model" for protein design and engineering. Hence, to understand the role of each disulfide in the structure and dynamics of IL-4, we carried out several spectroscopic analyses (circular dichroism [CD], fluorescence, nuclear magnetic resonance [NMR]), and molecular dynamics (MD) simulations on wild-type IL-4 and four IL-4 disulfide mutants. All disulfide mutants showed loss of structure, altered interhelical angles, and looser core packings, showing that all disulfides are relevant for maintaining the overall fold and stability of the four-helix bundle motif, even at very low pH. In the absence of the disulfide connecting both protein termini Cys3-Cys127, C3T-IL4 showed a less packed protein core, loss of secondary structure (~9%) and fast motions on the sub-nanosecond time scale (lower S2 order parameters and larger τc correlation time), especially at the two protein termini, loops, beginning of helix A and end of helix D. In the absence of Cys24-Cys65, C24T-IL4 presented shorter alpha-helices (14% loss in helical content), altered interhelical angles, less propensity to form the small anti-parallel beta-sheet and increased dynamics. Simultaneously deprived of two disulfides (Cys3-Cys127 and Cys24-Cys65), IL-4 formed a partially folded "molten globule" with high 8-anilino-1-naphtalenesulphonic acid-binding affinity and considerable loss of secondary structure (~50%decrease), as shown by the far UV-CD, NMR, and MD data.


Assuntos
Dissulfetos , Interleucina-4 , Conformação Proteica , Interleucina-4/química , Dissulfetos/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Dicroísmo Circular
5.
Bioorg Med Chem ; 93: 117443, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634417

RESUMO

Photodynamic therapy (PDT) is an established anticancer treatment that combines the use of a photosensitiser (PS) and a light source of a specific wavelength for the generation of reactive oxygen species (ROS) that are toxic to the tumour cells. Foscan® (mTHPC) is a clinically-approved chlorin used for the PDT treatment of advanced head and neck, prostate and pancreatic cancers but is characterized by being photochemically unstable and associated with prolonged skin photosensitivity. Herein, we report the synthesis of new 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused chlorins, having the meso-tetra(3-hydroxyphenyl)macrocycle core of mTHPC, by exploring the [8π + 2π] cycloaddition of a meso-tetra(3-hydroxyphenyl)porphyrin derivative with diazafulvenium methides. These chlorins have photochemical properties similar to Foscan® but are much more photostable. Among the novel compounds, two chlorins with a hydroxymethyl group and its azide derivative present in the 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused system, are promising photodynamic agents with activity in the 100 nM range against triple-negative breast cancer cells and, in the case of azidomethyl chlorin, a safer phototherapeutic index compared to Foscan®.


Assuntos
Neoplasias Pancreáticas , Fotoquimioterapia , Porfirinas , Masculino , Humanos , Porfirinas/farmacologia , Piridinas
6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769298

RESUMO

Influenza viruses are responsible for significant morbidity and mortality worldwide in winter seasonal outbreaks and in flu pandemics. Influenza viruses have a high rate of evolution, requiring annual vaccine updates and severely diminishing the effectiveness of the available antivirals. Identifying novel viral targets and developing new effective antivirals is an urgent need. One of the most promising new targets for influenza antiviral therapy is non-structural protein 1 (NS1), a highly conserved protein exclusively expressed in virus-infected cells that mediates essential functions in virus replication and pathogenesis. Interaction of NS1 with the host proteins PI3K and TRIM25 is paramount for NS1's role in infection and pathogenesis by promoting viral replication through the inhibition of apoptosis and suppressing interferon production, respectively. We, therefore, conducted an analysis of the druggability of this viral protein by performing molecular dynamics simulations on full-length NS1 coupled with ligand pocket detection. We identified several druggable pockets that are partially conserved throughout most of the simulation time. Moreover, we found out that some of these druggable pockets co-localize with the most stable binding regions of the protein-protein interaction (PPI) sites of NS1 with PI3K and TRIM25, which suggests that these NS1 druggable pockets are promising new targets for antiviral development.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Influenza Humana/metabolismo , Vírus da Influenza A/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
7.
Biomedicines ; 10(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552032

RESUMO

Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-ß structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.

9.
Food Res Int ; 157: 111399, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761653

RESUMO

Helichrysum italicum (H. italicum) is a halophyte shrub with bright yellow flowers with a strong curry-like aroma. The essential oils of H. italicum have been used in the production of cosmetics and pharmaceuticals, due to their antiallergic and anti-inflammatory properties. In the agri-food sector, H. italicum flowers can be used for seasoning and flavoring food, and as natural food preservatives. Here, we report on the composition, bioactive compounds, and nutritive value of H. italicum flowers. Flowers were mainly composed of carbohydrates (>80 % dry weight), followed by minerals (6.31 ± 0.95 % dw), protein (5.44 ± 0.35 % dw), and lipids (3.59 % ± 0.53 % dw). High percentages of Fe, Zn, Ca, and K were found in the flower material, along with a high content in antioxidants, polyphenols, and carotenoids, as corroborated by the nuclear magnetic resonance (NMR) data. Flowers were mainly composed of saturated fatty acids (SFAs) (54.50 ± 0.95 % of total FA), followed by polyunsaturated fatty acids (PUFAs) (37.73 ± 1.25 % of total FA) and monounsaturated fatty acids (MUFAs) (7.77 ± 0.34 %), as detected by gas chromatography mass spectrometry (GC-MS). The omega-6 PUFA linoleic acid (22.55 ± 0.76 % of total FA) was the most abundant fatty acid found. Flower extracts showed antimicrobial activity against Saccharomyces cerevisiae and Komagataella phaffii, as well as against Gram-negative (Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus) bacteria. H. italicum flower material was nontoxic to human intestinal Caco-2 model cells at concentrations up to 1.0 % w/v.


Assuntos
Helichrysum , Óleos Voláteis , Células CACO-2 , Flores/química , Helichrysum/química , Humanos , Valor Nutritivo , Óleos Voláteis/química
10.
J Cheminform ; 14(1): 40, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754029

RESUMO

Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning models are emerging as a promising solution to perform de novo drug design, i.e., to generate drug-like molecules tailored to specific needs. However, stereochemistry was not explicitly considered in the generated molecules, which is inevitable in targeted-oriented molecules. This paper proposes a framework based on Feedback Generative Adversarial Network (GAN) that includes optimization strategy by incorporating Encoder-Decoder, GAN, and Predictor deep models interconnected with a feedback loop. The Encoder-Decoder converts the string notations of molecules into latent space vectors, effectively creating a new type of molecular representation. At the same time, the GAN can learn and replicate the training data distribution and, therefore, generate new compounds. The feedback loop is designed to incorporate and evaluate the generated molecules according to the multiobjective desired property at every epoch of training to ensure a steady shift of the generated distribution towards the space of the targeted properties. Moreover, to develop a more precise set of molecules, we also incorporate a multiobjective optimization selection technique based on a non-dominated sorting genetic algorithm. The results demonstrate that the proposed framework can generate realistic, novel molecules that span the chemical space. The proposed Encoder-Decoder model correctly reconstructs 99% of the datasets, including stereochemical information. The model's ability to find uncharted regions of the chemical space was successfully shown by optimizing the unbiased GAN to generate molecules with a high binding affinity to the Kappa Opioid and Adenosine [Formula: see text] receptor. Furthermore, the generated compounds exhibit high internal and external diversity levels 0.88 and 0.94, respectively, and uniqueness.

11.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562892

RESUMO

Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene, PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational stability of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches have been developed to treat the more severe manifestations of the disorder, but they are either not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV complex, we design a new generation of compound IV-analogues with a higher affinity for the enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence between the calculated alchemical binding free energies and the experimentally determined ΔΔGb values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat PKU using the X-ray structure of their complexes with the target PAH enzyme.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Calorimetria , Humanos , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilcetonúrias/metabolismo , Dobramento de Proteína
12.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269739

RESUMO

Interleukin-1 receptor type 1 (IL-1R1) is a key player in inflammation and immune responses. This receptor regulates IL-1 activity in two forms: as a membrane-bound form and as a soluble ectodomain. The details and differences between the conformational dynamics of the membrane-bound and the soluble IL-1R1 ectodomains (ECDs) remain largely elusive. Here, we study and compare the structural dynamics of the soluble and membrane-bound IL-1R1-ECDs using molecular dynamics (MD) simulations, focusing on the flexible interdomain linker of the ECD, as well as the spatial rearrangements between the Ig-like domains of the ECD. To explore the membrane-bound conformations, a full-length IL-1R1 structural model was developed and subjected to classical equilibrium MD. Comparative analysis of multiple MD trajectories of the soluble and the membrane-bound IL-1R1-ECDs reveals that (i) as somewhat expected, the extent of the visited "open-to-closed" transitional states differs significantly between the soluble and membrane-bound forms; (ii) the soluble form presents open-closed transitions, sampling a wider rotational motion between the Ig-like domains of the ECD, visiting closed and "twisted" conformations in higher extent, whereas the membrane-bound form is characterized by more conformationally restricted states; (iii) interestingly, the backbone dihedral angles of residues Glu202, Glu203 and Asn204, located in the flexible linker, display the highest variations during the transition between discrete conformational states detected in IL-1R1, thus appearing to work as the "central wheel of a clock's movement". The simulations and analyses presented in this contribution offer a deeper insight into the structure and dynamics of IL-1R1, which may be explored in a drug discovery setting.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica
13.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163653

RESUMO

The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the "epicenter" of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Doenças Neuroinflamatórias/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Animais , Humanos
14.
Virology ; 565: 106-116, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773868

RESUMO

Influenza NS1 is a promising anti-influenza target, considering its conserved and druggable structure, and key function in influenza replication and pathogenesis. Notwithstanding, target identification and validation, strengthened by experimental data, are lacking. Here, we further explored our previously designed structure-based antiviral rationale directed to highly conserved druggable NS1 regions across a broad spectrum of influenza A viruses. We aimed to identify NS1-mutated viruses exhibiting a reduced growth phenotype and/or an altered cell apoptosis profile. We found that NS1 mutations Y171A, K175A (consensus druggable pocket 1), W102A (consensus druggable pocket 3), Q121A and G184P (multiple consensus druggable pockets) - located at hot spots amenable for pharmacological modulation - significantly impaired A(H1N1)pdm09 virus replication, in vitro. This is the first time that NS1-K175A, -W102A, and -Q121A mutations are characterized. Our map-and-mutate strategy provides the basis to establish the NS1 as a promising target using a rationale with a higher resilience to resistance development.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular , Cães , Descoberta de Drogas , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Influenza Humana/metabolismo , Células Madin Darby de Rim Canino , Mutação , Infecções por Orthomyxoviridae/metabolismo
15.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008816

RESUMO

Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies-amyloidoses-are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.


Assuntos
Amiloide/metabolismo , Pré-Albumina/química , Agregados Proteicos , Amiloide/ultraestrutura , Dicroísmo Circular , Doxiciclina/química , Doxiciclina/farmacologia , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Pré-Albumina/ultraestrutura , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
16.
Food Chem ; 345: 128732, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33341558

RESUMO

Edible wild plants are part of the ethnobotanical and gastronomic heritage of different geographical areas. Corema album (L.) D. Don is an endemic species of the dune systems of the Atlantic coast of the Iberian Peninsula. The aerial parts of Corema album are a source of nutrients and antioxidants. The Corema album white berry (Portuguese crowberry) is rich in calcium, iron, and zinc. The plant also shows high phenolic content and antioxidant capacity associated with the leaves, fruit, and flowers. The presence of organic acids, namely phenolic acids, such as hydroxycinnamic acids, and long chain polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 has also been confirmed. Toxicity studies evaluated by cell viability tests with human intestinal epithelium model cells (Caco-2) have shown that, at low concentrations, plant extracts may present beneficial effects.


Assuntos
Ericaceae/química , Hidroxibenzoatos/análise , Minerais/análise , Plantas Comestíveis/química , Antioxidantes/análise , Células CACO-2 , Frutas/química , Humanos , Extratos Vegetais/toxicidade , Folhas de Planta/química
17.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287192

RESUMO

One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Pré-Albumina/metabolismo , Proteínas Sanguíneas/metabolismo , Escherichia coli/metabolismo , Humanos , Cinética , Polimerização , Agregados Proteicos/fisiologia , Proteínas Recombinantes/metabolismo
18.
Molecules ; 25(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202648

RESUMO

Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Humanos , Ligantes , Nanopartículas/química , Peptídeos/química
19.
Front Chem ; 8: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411655

RESUMO

In silico methodologies have opened new avenues of research to understanding and predicting drug resistance, a pressing health issue that keeps rising at alarming pace. Sequence-based interpretation systems are routinely applied in clinical context in an attempt to predict mutation-based drug resistance and thus aid the choice of the most adequate antibiotic and antiviral therapy. An important limitation of approaches based on genotypic data exclusively is that mutations are not considered in the context of the three-dimensional (3D) structure of the target. Structure-based in silico methodologies are inherently more suitable to interpreting and predicting the impact of mutations on target-drug interactions, at the cost of higher computational and time demands when compared with sequence-based approaches. Herein, we present a fast, computationally inexpensive, sequence-to-structure-based approach to drug resistance prediction, which makes use of 3D protein structures encoded by input target sequences to draw binding-site comparisons with susceptible templates. Rather than performing atom-by-atom comparisons between input target and template structures, our workflow generates and compares Molecular Interaction Fields (MIFs) that map the areas of energetically favorable interactions between several chemical probe types and the target binding site. Quantitative, pairwise dissimilarity measurements between the target and the template binding sites are thus produced. The method is particularly suited to understanding changes to the 3D structure and the physicochemical environment introduced by mutations into the target binding site. Furthermore, the workflow relies exclusively on freeware, making it accessible to anyone. Using four datasets of known HIV-1 protease sequences as a case-study, we show that our approach is capable of correctly classifying resistant and susceptible sequences given as input. Guided by ROC curve analyses, we fined-tuned a dissimilarity threshold of classification that results in remarkable discriminatory performance (accuracy ≈ ROC AUC ≈ 0.99), illustrating the high potential of sequence-to-structure-, MIF-based approaches in the context of drug resistance prediction. We discuss the complementarity of the proposed methodology to existing prediction algorithms based on genotypic data. The present work represents a new step toward a more comprehensive and structurally-informed interpretation of the impact of genetic variability on the response to HIV-1 therapies.

20.
Biochim Biophys Acta Biomembr ; 1862(9): 183314, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304757

RESUMO

α-Synuclein (αsyn) is a cytosolic intrinsically disordered protein (IDP) known to fold into an α-helical structure when binding to membrane lipids, decreasing protein aggregation. Model membrane enable elucidation of factors critically affecting protein folding/aggregation, mostly using either small unilamellar vesicles (SUVs) or nanodiscs surrounded by membrane scaffold proteins (MSPs). Yet SUVs are mechanically strained, while MSP nanodiscs are expensive. To test the impact of lipid particle size on α-syn structuring, while overcoming the limitations associated with the lipid particles used so far, we compared the effects of large unilamellar vesicles (LUVs) and lipid-bilayer nanodiscs encapsulated by diisobutylene/maleic acid copolymer (DIBMA) on αsyn secondary-structure formation, using human-, elephant- and whale -αsyn. Our results confirm that negatively charged lipids induce αsyn folding in h-αsyn and e-αsyn but not in w-αsyn. When a mixture of zwitterionic and negatively charged lipids was used, no increase in the secondary structure was detected at 45 °C. Further, our results show that DIBMA/lipid particles (DIBMALPs) are highly suitable nanoscale membrane mimics for studying αsyn secondary-structure formation and aggregation, as folding was essentially independent of the lipid/protein ratio, in contrast with what we observed for LUVs having the same lipid compositions. This study reveals a new and promising application of polymer-encapsulated lipid-bilayer nanodiscs, due to their excellent efficiency in structuring disordered proteins such as αsyn into nontoxic α-helical structures. This will contribute to the unravelling and modelling aspects concerning protein-lipid interactions and α-helix formation by αsyn, paramount to the proposal of new methods to avoid protein aggregation and disease.


Assuntos
Lipídeos de Membrana/química , Polímeros/farmacologia , Lipossomas Unilamelares/química , alfa-Sinucleína/química , Alcenos/química , Alcenos/farmacologia , Humanos , Proteínas Intrinsicamente Desordenadas/química , Bicamadas Lipídicas/química , Maleatos/química , Maleatos/farmacologia , Proteínas de Membrana/química , Polímeros/química , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA